Find the volume of the figure created by revolving each region bounded by the curves about the given line.

1. \(y = -\frac{2}{3}x + 4 \), the x-axis, and the y-axis about:

 a) the x-axis

 \[
 V = \int_0^6 \pi \left(\frac{2}{3}x + 4 \right)^2 \, dx
 \]

 \[
 = \pi \left[\frac{4}{9}x^3 + \frac{16}{3}x^2 + 16x \right]_0^6
 \]

 \[
 = \pi \left[32 - 96 + 96 \right]
 \]

 \[
 = 32\pi
 \]

 b) the y-axis

 \[
 y = -\frac{2}{3}x + 4
 \]

 \[
 3y = -2x + 12
 \]

 \[
 2x = -3y + 12
 \]

 \[
 x = -\frac{3}{2}y + 6
 \]

 \[
 V = \int_0^4 \pi \left(\frac{3}{2}y + 6 \right)^2 \, dy
 \]

 \[
 = \pi \left[\frac{9}{4}y^3 + 18y^2 + 36y \right]_0^4
 \]

 \[
 = \pi \left[32 - 96 + 96 \right]
 \]

 \[
 = 32\pi
 \]

2. \(y = \sqrt{x} \), \(x = 4 \), and the x-axis about:

 a) the x-axis

 \[
 V = \int_0^4 \pi \left(\sqrt{x} \right)^2 \, dx
 \]

 \[
 = \pi \left[\frac{1}{2}x^2 \right]_0^4
 \]

 \[
 = \pi \left[8 \right]
 \]

 \[
 = 8\pi
 \]

 b) \(x = 4 \)

 \[
 V = \int_0^2 \pi \left(4 - \sqrt{y} \right)^2 \, dy
 \]

 \[
 = \pi \left[\frac{1}{8}y^2 + \frac{1}{2}y^2 + 16 - 2y \right]_0^2
 \]

 \[
 = \pi \left[64 - \frac{64}{3} + \frac{24}{3} \right]
 \]

 \[
 = 256\pi
 \]
3. \(y = e^x, \ x = 3, \) the \(x \)-axis, and the \(y \)-axis about:
 a) the \(x \)-axis
 \[
 V = \int_0^3 \pi (e^x)^2 \, dx
 \]
 b) \(x = 3 \)
 \[
 \text{Two Volumes!}
 \]
 \[
 V_1 = \pi 3^2 - 1
 V_1 = 9\pi
 \]
 \[
 V_2 = \int_1^{e^3} \pi (3 - \ln y)^2 \, dy
 \]
 \[
 V_2 = 72.79408
 \]
 \[
 V_d = V_1 + V_2 = 101.068
 \]

6. Find the volume of the frustum of a cone on the right.
 Hint: The figure is a result of a rotation. So position it on the
 \(xy \)-plane in a way so the figure is the result of a
 line that has been rotated around the \(x \)-axis. Find the
 the equation of that line then apply the definite integral.

\[
V = \int_0^{10} \pi \left(\frac{1}{5}x + 8 \right)^2 \, dx
\]

Answers:

1a) 32\pi
2a) 632.134
b) 48\pi
c) 101.068
2a) 8\pi
6) 1480\pi/3
b) 256\pi/15