Chapter 3 TEST Day 1 Study Session

1. Find POIs.

2. If f' is given, find POIs.
Evaluate the limit:

\(\lim_{x \to \infty} \frac{x^3 + 5x^3}{8x^3 - x} \)

\(\lim_{x \to \infty} \frac{x^2 + 5x}{8x^3 - x} \)

\(\lim_{x \to \infty} \frac{x^3 + 5x^3}{8x^2 - x} \)
True or False.

a) \(-2 < t < 0\) \(f\) increases
b) \(-3 < t < -2\) \(f\) decreases
c) \(0 < t < 3\)

d) \(f'\) is undefined at \(x = -1\) \(\&\) \(x = 1\)
e) \(f''\) is undefined at \(x = -1\) \(\&\) \(x = 1\)
f) \(f\) local max at \(x = 0\)
g) \(f\) local min at \(x = -2\)
h) \(f\) is linear on \(1 < x < 3\).

Go over #43 on ch3 pt 7.
Things to know about limits

Removable

at a & b, \(\lim_{x \to a} f \) & \(\lim_{x \to b} f \) exists

Essential
Jump Break

at a, b, & c, limit does not exist.

Not Differentiable at
- any discontinuity
- sharp corner
- cusp
- vertical tangents

\[f = \sqrt[3]{x} \]
<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>k</td>
</tr>
</tbody>
</table>

If $f'(x) > 0$, and $f''(x) < 0$, find possible values of k.
6. \begin{array}{c|ccccccc}
 x & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
 f'(x) & 5 & -3 & 0 & 2 & 1 & 0 & 2 \\
\end{array}

If $f'(x)$ has exactly 2 zeros, where is f increasing?
7. \[f(x) = \begin{cases}
\cos x & x \leq 0 \\
1 & x > 0
\end{cases} \]

True or False.

a) \(\lim_{x \to 0} f(x) = 1 \)

b) \(f(x) \) is differentiable at \(x = 0 \)

c) \(\lim_{x \to 0} f(x) = f(0) \)

d) \(\lim_{h \to 0} \frac{f(h+0) - f(0)}{h} \) exists
\[x(t) = \frac{1}{2} t^3 - 4t^2 - 20t \]

is the position of a particle moving horizontally. When is the particle at rest?
9. Find when \(f(x) \) increases if \(f'(x) = x^3 - \frac{1}{x^2} \).
Find the signs of f, f', and f'' at 1.
Find \(\frac{dy}{dx} \bigg|_{x=3} \) for

\[x^3 + x^2 y = e \]
12. Write an equation where the rate of change of \(y \) is directly proportional to \(x \) and inversely proportional to the cube of \(z \).
13) At what value(s) does $y = x^3 - x^2$ have a point of inflection?

14) If $x(t) = t^4 - 2t^3$, then when is particle's velocity 0?
\[15 \lim_{h \to 0} \frac{(2+h)^3 - 2^3}{h} = \]

(a) Equate the Equation

(b) L'Hôpital's Rule
\[\lim_{{h \to 0}} \frac{\sin\left(\frac{3\pi}{4} + h\right) - \sin \frac{3\pi}{4}}{h} \]

(a) Equate the equation.

(b) L'Hopital's Rule
If \(f(x) = x + e^{2x} \), find the equation of the tangent line at \(x = 0.5 \).
18. Find $f''(x)$ for $f(x) = \tan(e^{\sin x})$.

$$f'(x) = \text{...}$$

19. Find $f'(2)$.
20. Find where $f(x) = (x^3)(e^x)$ is concave down?
2. If \(f(x) = x^3 + 1 \) and \(g(x) = f^{-1}(x) \) and \(g(9) = 2 \), then find \(g'(9) \).
22. Find the signs of f, f', f''.

[Diagram of three graphs showing the signs of f, f', and f''.]
23. Where does y decrease if $y = \frac{1}{3}x^5 - 2x^3$?

24. Find the instantaneous rate of change of $f(x) = \frac{x - 5}{4 - x^2}$ at $x = 1$.

JPF 24) Find the average rate of change of \(f(x) = \frac{x - 5}{y - x^3} \)
on \([0, 1] \).
25. \[f(x) = \begin{cases}
6x + 1 & x < 0 \\
2 & x = 0 \\
1 + x^2 & x > 0
\end{cases} \]

Graph

True or False

\(\lim_{x \to 0} f(x) = 1 \)

\(\lim_{x \to 0} f(x) = f(0) \)

\(f'(0) \text{ exists} \)

\(f \text{ is differentiable at } x = 0 \)

\(\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} \text{ exists} \)
\[\begin{array}{c|cccc} x & 0 & 10 & 20 & 30 \\ \hline P(x) & 100 & 80 & 70 & 68 \end{array} \]

Find \(P'(10) = \)

Find \(P'(18) = \)

Find \(P'(30) = \)
27) Find the maximum velocity if the position is
\[x(t) = 2t^3 - 8t^2 + t - 1000 \]
on \([0, 10]\).
\[28 \] Find \(\frac{dy}{d\theta} \) for \(y = \sin 2\theta \tan \theta \) at \(\theta = \frac{\pi}{6} \).
29) Know stuff about horizontal asymptote. Let \(y = k \) be H.A.

\[
\lim_{{x \to \infty}} y = k \quad \leftarrow \text{same same}
\]

\[\exists \text{ a value } x \quad \Rightarrow f(x) = k \text{.}\]

\(\text{ie} \) You can cross the H.A.
Find POI, if
\[f''(x) = x^2(x-4)(x+3) \]