1. For what value(s) of \(x \) is \(f(x) = \frac{x}{x^2 - 1} \) discontinuous?

\[x^2 - 1 = 0 \]
\[x = \pm 1 \]

2. \(f(x) = \frac{x}{x^2 + 2x} \) is continuous for all real numbers EXCEPT:

\[x^2 + 2x = 0 \]
\[x(x + 2) = 0 \]
\[x = 0, x = -2 \]

3. \(f(x) = \frac{x + 2}{x^2 - 4} \) is undefined at

\[x^2 - 4 = 0 \]
\[x = \pm 2 \]

4. \(f(x) = \frac{1}{x^2 + 1} \) is defined for all real numbers EXCEPT:

\[x^2 + 1 = 0 \]
\[x = 0 \]
\[x \neq 0 \]

For #5 to #8, find the vertical asymptotes of each function.

5. \(f(x) = \frac{x}{x^2 - 49} \)

\[x^2 - 49 = 0 \]
\[x = 7, x = -7 \]

6. \(f(x) = \frac{x}{4x + 8} \)

\[4x + 8 = 0 \]
\[x = -2 \]

7. \(f(x) = \frac{x^2 - x}{x - 1} \)

No V.A.

8. \(f(x) = \frac{(x^3 + 2x^2 - x - 2)}{x^3 + x^2 - 2x} \)

\[\frac{x(x + 2) - 1(x + 2)}{x(x + 2) - 1} \]
\[\frac{x(x + 2)(x - 1)}{x(x + 1)(x - 1)} \]
\[x = 0 \]
For #9 to #12, find the horizontal asymptotes of each function.

9. \(f(x) = \frac{x^2 - 9}{3x + 2} \)

 NO H.A.

10. \(f(x) = \frac{x^2 - 4x + 4}{4x^2 - 1} \)

 \[y = \frac{1}{4} \]

11. \(f(x) = \frac{x}{x^3 - 2} \)

 \[y = 0 \]

12. \(f(x) = \frac{x^3 - 1}{x - 1} \)

 \[\frac{(x-1)(x^2 + x + 1)}{(x-1)} \]

 NO H.A.

Multiple Choice.

13. \(f(x) = \frac{(x-1)^2}{x^2 - 1} \)

 \(\frac{(x-1)(x-1)}{(x+1)(x-1)} \)

 VA \(x = -1 \) Hole \(x = 1 \)

 (A) a hole at \(x = -1 \)
 (B) holes at \(x = -1 \) and \(x = 1 \)
 (C) vertical asymptotes at \(x = 1 \) and \(x = -1 \)
 (D) horizontal asymptote at \(y = -1 \)
 (E) a hole at \(x = 1 \) and a vertical asymptote at \(x = -1 \)

14. For \(f(x) = \frac{x^3 + 8}{(x+2)^2} \), choose all that are true.

 \(\frac{(x+2)(x^2 - 2x + 4)}{(x+2)(x+2)} \)

 \(x = -2 \) Hole \(x = -2 \) VA

 (A) hole at \(x = -2 \)
 (B) vertical asymptote at \(x = -2 \)
 (C) horizontal asymptote at \(y = 0 \)
 (D) horizontal asymptote at \(y = 1 \)
 (E) no horizontal asymptote
Find each characteristic of the rational functions and then sketch their graphs.

15. \(y = \frac{5x}{x - 2} \)

a) zeros
\[
\begin{align*}
x &= 0 \\
x &= 0
\end{align*}
\]

b) \(y \)-intercepts
\[
\begin{align*}
y &= s(0) \\
y &= 0
\end{align*}
\]

c) undefined values of \(x \)
\[
\begin{align*}
x - 2 &= 0 \\
x &= 2
\end{align*}
\]

\[
\text{same} \quad x = 2
\]

d) vertical asymptotes
\[
\text{essential at } x = 2
\]

jump

e) horizontal or slant asymptotes
\[
y = 5
\]

f) identify and locate all discontinuities

\[
\text{graph}
\]
16. \(y = \frac{2x}{x^2 - 1} \)

\[\frac{-2x}{x^2 - 1} = -\left(\frac{2x}{x^2 - 1} \right) \]

a) zeros

\[0 = \frac{2x}{x^2 - 1} \]

\[0 = 2x \]

\[0 = x \]

b) \(y \)-intercepts

\[y = \frac{2(0)}{0^2 - 1} \]

\[y = 0 \]

c) undefined values of \(x \)

\[x^2 - 1 = 0 \]

\[x = \pm 1 \]

\[\text{Same} \]

d) vertical asymptotes

\[x = \pm 1 \]

e) horizontal or slant asymptotes

\[y = 0 \]

f) identify and locate all discontinuities

\[\text{essential at } x = \pm 1 \]
17. \(y = \frac{x^2}{x-3} \)

\[
\frac{(x^2)}{(x-3)} \rightarrow \frac{x^2}{-x-2} \quad \text{neither}
\]

a) zeros
\[
x = 0
\]

b) \(y \)-intercepts
\[
y = 0
\]

c) undefined values of \(x \)
\[
x = 3
\]

d) vertical asymptotes
\[
\]

e) horizontal or slant asymptotes
\[
\text{No HA.}
\]

f) identify and locate all discontinuities
\[
\text{Essential at } x = 3
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\text{as } x \to \infty, \ y = x+3 + \frac{9}{x-3} \rightarrow y = x+3
\]
18. \(y = \frac{x^2 - 1}{x - 1} \)

a) zeros
\[
\frac{x+1}{x-1} (x-1) = 0
\]
\[
\frac{x+1}{x-1} = 0
\]
\[
x = -1
\]

b) y-intercepts
\[
y = \frac{0^2 - 1}{0 - 1}
\]
\[
y = 1
\]

c) undefined values of \(x \)
\[
(x-1) = 0
\]
\[
x = 1
\]

d) vertical asymptotes
None

e) horizontal or slant asymptotes
No HA
No SA

Since \(\frac{x^2 - 1}{x - 1} \to x + 1 \)

f) identify and locate all discontinuities
Removable at \(x = 1 \)

Graph
\[
y = x + 1
\]
with a hole at \(x = 1 \)