The temperature, in degrees Celsius (°C), of the water in a pond is a differentiable function \(W \) of time \(t \). The table above shows the water temperature as recorded every 3 days over a 15-day period.

(a) Use data from the table to find an approximation for \(W'(12) \). Show the computations that lead to your answer. Indicate units of measure.

(b) Approximate the average temperature, in degrees Celsius, of the water over the time interval \(0 \leq t \leq 15 \) days by using a trapezoidal approximation with subintervals of length \(\Delta t = 3 \) days.

(c) A student proposes the function \(P \), given by \(P(t) = 20 + 10t e^{-t/3} \), as a model for the temperature of the water in the pond at time \(t \), where \(t \) is measured in days and \(P(t) \) is measured in degrees Celsius. Find \(P'(12) \). Using appropriate units, explain the meaning of your answer in terms of water temperature.

(d) Use the function \(P \) defined in part (c) to find the average value, in degrees Celsius, of \(P(t) \) over the time interval \(0 \leq t \leq 15 \) days.
Question 3

The rate of fuel consumption, in gallons per minute, recorded during an airplane flight is given by a twice-differentiable and strictly-increasing function R of time t. The graph of R and a table of selected values of $R(t)$, for the time interval $0 \leq t \leq 90$ minutes, are shown above.

(a) Use data from the table to find an approximation for $R'(45)$. Show the computations that lead to your answer. Indicate units of measure.

(b) The rate of fuel consumption is increasing fastest at time $t = 45$ minutes. What is the value of $R''(45)$? Explain your reasoning.

(c) Approximate the value of $\int_0^{90} R(t) \, dt$ using a left Riemann sum with the five subintervals indicated by the data in the table. Is this numerical approximation less than the value of $\int_0^{90} R(t) \, dt$? Explain your reasoning.

(d) For $0 < b \leq 90$ minutes, explain the meaning of $\int_0^b R(t) \, dt$ in terms of fuel consumption for the plane. Explain the meaning of $\frac{1}{b} \int_0^b R(t) \, dt$ in terms of fuel consumption for the plane. Indicate units of measure in both answers.
The figure above shows the graph of f', the derivative of the function f, for $-7 \leq x \leq 7$. The graph of f' has horizontal tangent lines at $x = -3$, $x = 2$, and $x = 5$, and a vertical tangent line at $x = 3$.

(a) Find all values of x, for $-7 < x < 7$, at which f attains a relative minimum. Justify your answer.

(b) Find all values of x, for $-7 < x < 7$, at which f attains a relative maximum. Justify your answer.

(c) Find all values of x, for $-7 < x < 7$, at which $f''(x) < 0$.

(d) At what value of x, for $-7 \leq x \leq 7$, does f attain its absolute maximum? Justify your answer.
Question 2

Let f be the function defined for $x \geq 0$ with $f(0) = 5$ and f', the first derivative of f, given by $f'(x) = e^{(-x/4)} \sin(x^3)$. The graph of $y = f'(x)$ is shown above.

(a) Use the graph of f' to determine whether the graph of f is concave up, concave down, or neither on the interval $1.7 < x < 1.9$. Explain your reasoning.

(b) On the interval $0 \leq x \leq 3$, find the value of x at which f has an absolute maximum. Justify your answer.

(c) Write an equation for the line tangent to the graph of f at $x = 2$.

Graph of f'